Incremental Augmented Naive Bayes Classifiers

نویسنده

  • Josep Roure Alcobé
چکیده

We propose two general heuristics to transform a batch Hill-climbing search into an incremental one. Our heuristics, when new data are available, study the search path to determine whether it is worth revising the current structure and if it is, they state which part of the structure must be revised. Then, we apply our heuristics to two Bayesian network structure learning algorithms in order to obtain incremental Augmented Naive Bayes classifiers. We experimentally show that our incremental approach saves a significant amount of computing time while it yields classifiers of similar quality as the ones learned with the batch approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental Learning of Tree Augmented Naive Bayes Classifiers

Machine learning has focused a lot of attention at Bayesian classifiers in recent years. It has seen that even Naive Bayes classifier performs well in many cases, it may be improved by introducing some dependency relationships among variables (Augmented Naive Bayes). Naive Bayes is incremental in nature but, up to now, there are no incremental algorithms for learning Augmented classifiers. When...

متن کامل

Title: Incremental Learning of Tree Augmented Naive Bayes Classifiers Authors:

Machine learning has focused a lot of attention at Bayesian classifiers in recent years. It has seen that even Naive Bayes classifier performs well in many cases, it may be improved by introducing some dependency relationships among variables (Augmented Naive Bayes). Naive Bayes is incremental in nature but, up to now, there are no incremental algorithms for learning Augmented classifiers. When...

متن کامل

Learning the Tree Augmented Naive Bayes Classifier from incomplete datasets

The Bayesian network formalism is becoming increasingly popular in many areas such as decision aid or diagnosis, in particular thanks to its inference capabilities, even when data are incomplete. For classification tasks, Naive Bayes and Augmented Naive Bayes classifiers have shown excellent performances. Learning a Naive Bayes classifier from incomplete datasets is not difficult as only parame...

متن کامل

A Theoretical and Experimental Evaluation of Augmented Bayesian Classifiers

Naive Bayes is a simple Bayesian network classifier with strong independence assumptions among features. This classifier despite its strong independence assumptions, often performs well in practice. It is believed that relaxing the independence assumptions of naive Bayes may improve the performance of the resulting structure. Augmented Bayesian Classifiers relax the independence assumptions of ...

متن کامل

Bayesian network classifiers which perform well with continuous attributes: Flexible classifiers

When modelling a probability distribution with a Bayesian network, we are faced with the problem of how to handle continuous variables. Most previous works have solved the problem by discretizing them with the consequent loss of information. Another common alternative assumes that the data are generated by a Gaussian distribution (parametric approach), such as conditional Gaussian networks, wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004